Programmed Speed Reduction Enables Aortic Valve Opening and Increased Pulsatility in the LVAD-Assisted Heart.

2015 
: Aortic valve opening (AVO) during left ventricular assist device (LVAD) support aids in preventing valve fusion, incompetence, and thrombosis. The programmed low speed algorithm (PLSA) allows AVO intermittently by reducing continuous motor speed during a dwell time. AVO and hemodynamics in the LVAD-assisted heart were measured using a HeartMate II (Thoratec Corporation, Pleasanton, CA) LVAD with a PLSA controller in a mock circulatory loop. Left ventricle and aortic pressures, LVAD, and total aortic flow were measured during pre-LVAD, non-PLSA and PLSA combinations of cardiac function, and LVAD speed. The low cardiac setting corresponded to a pre-LVAD cardiac output of 2.8 L/min, stroke volume of 40 ml, and ejection fraction of 22%; the medium setting produced values of 3.5 L/min, 50 ml, and 28%, respectively. Results show that the PLSA controller set at 10 krpm, dropping to 7 krpm for dwell time of 6 s, adequately produced AVO for all tested cardiac functions with only minimal changes in cardiac output. However, AVO frequency was independent of opening area and systolic duration, which both decreased with increasing LVAD support. Furthermore, aortic pulsatility index quadrupled in the aortic root and doubled in the distal aorta during PLSA conditions, providing evidence that AVO and blood mixing are enabled by PLSA control at the appropriate speed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    19
    Citations
    NaN
    KQI
    []