Geostatistics for Context-Aware Image Classification
2015
Context information is fundamental for image understanding. Many algorithms add context information by including semantic relations among objects such as neighboring tendencies, relative sizes and positions. To achieve context inclusion, popular context-aware classification methods rely on probabilistic graphical models such as Markov Random Fields MRF or Conditional Random Fields CRF. However, recent studies showed that MRF/CRF approaches do not perform better than a simple smoothing on the labeling results.
The need for more context awareness has motivated the use of different methods where the semantic relations between objects are further enforced. With this, we found that on particular application scenarios where some specific assumptions can be made, the use of context relationships is greatly more effective.
We propose a new method, called GeoSim, to compute the labels of mosaic images with context label agreement. Our method trains a transition probability model to enforce properties such as class size and proportions. The method draws inspiration from Geostatistics, usually used to model spatial uncertainties. We tested the proposed method in two different ocean seabed classification context, obtaining state-of-art results.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
18
References
5
Citations
NaN
KQI