Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure

2014 
A holistic approach to strain monitoring in fibre-reinforced polymer composites is presented using embedded fibre Bragg grating sensors. Internal strains are monitored in unidirectional E-glass/epoxy laminate beams during vacuum infusion, curing, post-curing and subsequent loading in flexure until failure. The internal process-induced strain development is investigated through use of different cure schedules and tool/part interactions. The fibre Bragg grating sensors success- fully monitor resin flow front progression during infusion, and strain development during curing, representative of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical properties of the differently cured specimens, despite the large differences in measured residual strains. This indicates that conventional flexure testing may not reveal residual strain or stress effects at small specimen scale levels. The internal stresses are seen to influence the accuracy of the fibre Bragg gratings within the loading regime. This study confirms the effectiveness of composite life cycle strain monitoring for developing consistent manufacturing processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    13
    Citations
    NaN
    KQI
    []