Composition dependence of electronic structure and optical properties of Hf1-xSixOy gate dielectrics

2008 
Composition-dependent electronic structure and optical properties of Hf1−xSixOy (0.1≤x≤0.6) gate dielectrics on Si at 450 °C grown by UV-photo-induced chemical vapor deposition (UV-CVD) have been investigated via x-ray photoemission spectroscopy and spectroscopy ellipsometry (SE). By means of the chemical shifts in the Hf 4f, Si 2p, and O 1s spectra, the Hf–O–Si bondings in the as-deposited films have been confirmed. Analyses of composition-dependent band alignment of Hf1−xSixOy/Si gate stacks have shown that the valence band (VB) offset (ΔEv) demonstrates little change; however, the values of conduction band offset (ΔEc) increase with the increase in the silicon atomic composition, resulting from the increase in the separation between oxygen 2p orbital VB state and antibonding d states intermixed of Hf and Si. Analysis by SE, based on the Tauc–Lorentz model, has indicated that decreases in the optical dielectric constant and increase in band gap have been observed as a function of silicon contents. Chang...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    25
    Citations
    NaN
    KQI
    []