Deep Ground and Energy: Carbon Sequestration and Coal Gasification

2018 
Deep coal reserves represent a valuable resource, both in terms of their potential for the sequestration of anthropogenic carbon dioxide and for energy extraction through underground coal gasification (UCG). This paper looks at the current field and research status of these technologies and, in line with on-going work at Cardiff University’s Geoenvironmental Research Centre (GRC), focuses special attention on the role of numerical modelling in advancing the research agenda. In response to poor carbon dioxide injectivity experienced in carbon sequestration trials and order-of-magnitude permeability losses caused by sorption induced coal swelling, the direction of work at the GRC is to improve the current understanding of the mechanical response of coal using a coupled thermal, hydraulic, chemical, mechanical modelling framework. Hence, the current focus of theoretical developments in this area are summarized. In relation to UCG, on-going developments to a comprehensive numerical model are discussed. The ultimate aim is to identify and quantify coupled mechanisms controlling syngas composition and production rate, heat and mass transport, geochemical reactions, geomechanical responses, and cavity growth to subsequently improve the state-of-the-art towards minimizing geoenvironmental risks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []