Classes for the masses: Systematic classification of unknowns using fragmentation spectra

2020 
Metabolomics experiments can employ non-targeted tandem mass spectrometry to detect hundreds to thousands of molecules in a biological sample. Structural annotation of molecules is typically carried out by searching their fragmentation spectra in spectral libraries or, recently, in structure databases. Annotations are limited to structures present in the library or database employed, prohibiting a thorough utilization of the experimental data. We present a computational tool for systematic compound class annotation: CANOPUS uses a deep neural network to predict 1,270 compound classes from fragmentation spectra, and explicitly targets compounds where neither spectral nor structural reference data are available. CANOPUS even predicts classes for which no MS/MS training data are available. We demonstrate the broad utility of CANOPUS by investigating the effect of the microbial colonization in the digestive system in mice, and through analysis of the chemodiversity of different Euphorbia plants; both uniquely revealing biological insights at the compound class level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    15
    Citations
    NaN
    KQI
    []