Hydrogen Solubility and Atomic Structure of Graphene Supported Pd Nanoclusters.

2021 
We investigated the atomic structure of graphene supported Pd nanoclusters and their interaction with hydrogen up to atmospheric pressures at room temperature by surface X-ray diffraction and scanning tunneling microscopy. We find that Ir seeded Pd nanocluster superlattices with 1.2 nm cluster diameters can be grown on the graphene/Ir(111) moire template with high structural perfection. The superlattice clusters are anchored through the rehybridized graphene to the Ir support, which superimposes a 2.0% inplane compression onto the clusters. During hydrogen exposure at 10 mbar pressure and room temperature, a significant part of the clusters gets unpinned from the superlattice. The clusters in registry undergo an out-of-plane expansion only, whereas the detached clusters expand in in- and out-of-plane directions. The formation of a hydrogen rich PdHx α' phase was not observed. After exposure to 1 bar, the majority of the clusters are unpinned from superlattice sites, due to their surface interaction with hydrogen and possible spill over to the graphene support. Only minor sintering was observed, which is more pronounced for the unpinned clusters. The results give evidence that ultrasmall Pd clusters on graphene are a stable hydrogen storage system with reduced hydrogen storage hysteresis and maintain a large surface area for hydrogen chemisorption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []