The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants

2018 
Abstract Nanostructured mesoporous titanium dioxide (TiO 2 ) particles with high specific surface area and average crystallite domain sizes within 2 nm and 30 nm have been prepared via the sol-gel and hydrothermal procedures. The characteristics of produced nanoparticles have been tested using X-Ray Diffraction (XRD), Brunauer–Emmett–Teller ( BET ) surface area analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Raman Spectroscopy as a function of temperature for their microstructural, porosity, morphological, structural and absorption properties. The as-synthesized TiO 2 nanostructures were attempted as catalysts in Rhodamine B and Sudan III dyes' photocatalytic decomposition in a batch reactor with the assistance of Ultra Violet (UV) light. The results show that for catalysts calcined at 300 °C, ∼100 % decomposition of Sudan III dye was observed when Hydrothermal based catalyst was used whiles ∼94 % decomposition of Rhodamine B dye was observed using the sol-gel based catalysts. These synthesized TiO 2 nanoparticles have promising potential applications in the light aided decomposition of a wide range of dye pollutants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    38
    Citations
    NaN
    KQI
    []