A requirement for neuropilin-1 in embryonic vessel formation

1999 
Neuropilin-1 is a membrane protein that is expressed in developing neurons and functions as a receptor or a component of the receptor complex for the class 3 semaphorins, which are inhibitory axon guidance signals. Targeted inactivation of the neuropilin-1 gene in mice induced disorganization of the pathway and projection of nerve fibers, suggesting that neuropilin-1 mediates semaphorin-elicited signals and regulates nerve fiber guidance in embryogenesis. Neuropilin-1 is also expressed in endothelial cells and shown to bind vascular endothelial growth factor (VEGF), a potent regulator for vasculogenesis and angiogenesis. However, the roles of neuropilin-1 in vascular formation have been unclear. This paper reported that the neuropilin-1 mutant mouse embryos exhibited various types of vascular defects, including impairment in neural vascularization, agenesis and transposition of great vessels, insufficient aorticopulmonary truncus (persistent truncus arteriosus), and disorganized and insufficient development of vascular networks in the yolk sac. The vascular defects induced by neuropilin-1 deficiency in mouse embryos suggest that neuropilin-1 plays roles in embryonic vessel formation, as well as nerve fiber guidance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    751
    Citations
    NaN
    KQI
    []