A chromosome-level assembly of the Atlantic herring - detection of a supergene and other signals of selection

2019 
The Atlantic herring is a model species for exploring the genetic basis for ecological adaptation, due to its huge population size and extremely low genetic differentiation at selectively neutral loci. However, such studies have so far been hampered because of a highly fragmented genome assembly. Here, we deliver a chromosome-level genome assembly based on a hybrid approach combining a de novo PacBio assembly with Hi-C-supported scaffolding. The assembly comprises 26 autosomes with sizes ranging from 12.4 to 33.1 Mb and a total size, in chromosomes, of 726 Mb. The development of a high-resolution linkage map confirmed the global chromosome organization and the linear order of genomic segments along the chromosomes. A comparison between the herring genome assembly with other high-quality assemblies from bony fishes revealed few interchromosomal but frequent intrachromosomal rearrangements. The improved assembly makes the analysis of previously intractable large-scale structural variation more feasible; allowing, for example, the detection of a 7.8 Mb inversion on chromosome 12 underlying ecological adaptation. This supergene shows strong genetic differentiation between populations from the northern and southern parts of the species distribution. The chromosome-based assembly also markedly improves the interpretation of previously detected signals of selection, allowing us to reveal hundreds of independent loci associated with ecological adaptation in the Atlantic herring.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    7
    Citations
    NaN
    KQI
    []