Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial:

2019 
Background. Abnormal muscle co-activation contributes to impairment after stroke. We developed a myoelectric computer interface (MyoCI) training paradigm to reduce abnormal co-activation. MyoCI provides intuitive feedback about muscle activation patterns, enabling decoupling of these muscles. Objective. To investigate tolerability and effects of MyoCI training of 3 muscle pairs on arm motor recovery after stroke, including effects of training dose and isometric versus movement-based training. Methods. We randomized chronic stroke survivors with moderate-to-severe arm impairment to 3 groups. Two groups tested different doses of isometric MyoCI (60 vs 90 minutes), and one group tested MyoCI without arm restraint (90 minutes), over 6 weeks. Primary outcome was arm impairment (Fugl-Meyer Assessment). Secondary outcomes included function, spasticity, and elbow range-of-motion at weeks 6 and 10. Results. Over all 32 subjects, MyoCI training of 3 muscle pairs significantly reduced impairment (Fugl-Meyer Assessme...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    11
    Citations
    NaN
    KQI
    []