Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors

2021 
Abstract Herein, we report a simple approach to fabricate PANI/cellulose/PAAM conductive hydrogels with interpenetrating structure by in-situ polymerization of PANI into the acid tolerant cellulose/PAAM hydrogel. The obtained conductive hydrogels not only can achieve high flexibility and excellent conductivity, but also can be directly sandwiched between carbon clothes to fabricate all-in-one configured supercapacitors. Such supercapacitors show excellent electrochemical performances with a large areal capacitance of 835.0 mF/cm2 (corresponding to 4.175 F/cm3), a high energy density of 74.22 μWh/cm2 and an enhanced cycling performance with 96% capacitance retention after 5000 cycles. What's more, the supercapacitors can withstand large bending/compressing deformations and wide temperature-tolerant from −60 to 80 °C. In addition, the PANI/cellulose/PAAM hydrogels can be fabricated into wearable motion sensors to monitor various human movements, such as finger bending and pressing, subtle clenching fist, swallowing and phonation in real-time. The obtained multifunctional performances may provide intriguing opportunities for practical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []