Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors

2019 
Spacers are key components that are used to support high voltage conductors in gas-insulated substations or gas-insulated lines. The analysis of the surface charge patterns on spacers remains a difficult task, which requires a comprehensive understanding of the physical mechanism of the gas-solid interface charging phenomenon. In this letter, we reported a field dependent property of surface charge accumulation patterns on spacers under DC stress. We verified this finding through experiment, and further, we put forward a field-dependent charging model based on dominant charge transport behavior under different electric fields. It was found that the charging characteristics of the spacer are dominated by the Ohmic conduction from the volume below an electric field of 2.5 kV/mm. When the electric field stress is higher than 2.5 kV/mm, the charging property of spacers is dominated by the enhanced gas ionization according to Townsend's law. The correctness of this model was verified by surface charge measurement results in literature studies, and a method for determining the dominant mechanism of charge accumulation under different electric fields was proposed.Spacers are key components that are used to support high voltage conductors in gas-insulated substations or gas-insulated lines. The analysis of the surface charge patterns on spacers remains a difficult task, which requires a comprehensive understanding of the physical mechanism of the gas-solid interface charging phenomenon. In this letter, we reported a field dependent property of surface charge accumulation patterns on spacers under DC stress. We verified this finding through experiment, and further, we put forward a field-dependent charging model based on dominant charge transport behavior under different electric fields. It was found that the charging characteristics of the spacer are dominated by the Ohmic conduction from the volume below an electric field of 2.5 kV/mm. When the electric field stress is higher than 2.5 kV/mm, the charging property of spacers is dominated by the enhanced gas ionization according to Townsend's law. The correctness of this model was verified by surface charge measurem...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    97
    Citations
    NaN
    KQI
    []