A Multi-Branch-and-Bound Binary Parallel Algorithm to Solve the Knapsack Problem 0–1 in a Multicore Cluster

2019 
This paper presents a process that is based on sets of parts, where elements are fixed and removed to form different binary branch-and-bound (BB) trees, which in turn are used to build a parallel algorithm called “multi-BB”. These sequential and parallel algorithms calculate the exact solution for the 0–1 knapsack problem. The sequential algorithm solves the instances published by other researchers (and the proposals by Pisinger) to solve the not-so-complex (uncorrelated) class and some problems of the medium-complex (weakly correlated) class. The parallel algorithm solves the problems that cannot be solved with the sequential algorithm of the weakly correlated class in a cluster of multicore processors. The multi-branch-and-bound algorithms obtained parallel efficiencies of approximately 75%, but in some cases, it was possible to obtain a superlinear speedup.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []