The pH dependence of flavivirus envelope protein structure: insights from molecular dynamics simulations

2014 
The flavivirus membrane fusion is triggered by the acid pH of the endosomes after virus endocytosis. The proposed mechanism involves changes in the protonation state of conserved histidine residues of the E protein present in the viral surface that undergoes a series of structural rearrangements that result in the fusion between the endosome and viral bilayers. We studied the pH dependence of E protein rearrangements of dengue virus type 2, used as a model, in the pH range experimented by the virus along the fusion process. We employed a low computational cost scheme to explore the behavior of the E protein by molecular dynamics (MD) simulations of complete systems that include the protein, the solvent, and ions. The procedure alternates cyclically the update of the ionization states of the protein residues with common MD steps applied to the new ionization configuration. Important pH-dependent protein structure rearrangements consistent with the changes of the protonation states of conserved histidine re...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    16
    Citations
    NaN
    KQI
    []