On inequalities for the norms of intermediate derivatives of multiply monotone functions defined on a finite segment

2012 
We study the following modification of the Landau–Kolmogorov problem: Let k; r ∈ ℕ, 1 ≤ k ≤ r − 1, and p, q, s ∈ [1,∞]. Also let MMm, m ∈ ℕ; be the class of nonnegative functions defined on the segment [0, 1] whose derivatives of orders 1, 2,…,m are nonnegative almost everywhere on [0, 1]. For every δ > 0, find the exact value of the quantity $$ \omega_{p,q,s}^{k,r}\left( {\delta; M{M^m}} \right): = \sup \left\{ {{{\left\| {{x^{(k)}}} \right\|}_q}:x \in M{M^m},{{\left\| x \right\|}_p} \leqslant \delta, {{\left\| {{x^{(k)}}} \right\|}_s} \leqslant 1} \right\}. $$ We determine the quantity \( \omega_{p,q,s}^{k,r}\left( {\delta; M{M^m}} \right) \) in the case where s = ∞ and m ∈ {r, r − 1, r − 2}. In addition, we consider certain generalizations of the above-stated modification of the Landau–Kolmogorov problem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []