Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32‐dependent pathways: evidence from PDE1B‐DARPP32 double‐knockout mice

2006 
Mice lacking phosphodiesterase 1B (PDE1B) exhibit an exaggerated locomotor response to d-methamphetamine and increased in vitro phosphorylation of DARPP32 (dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa) at Thr34 in striatal brain slices treated with the D1 receptor agonist, SKF81297. These results indicated a possible regulatory role for PDE1B in pathways involving DARPP32. Here, we generated PDE1B × DARPP32 double-knockout (double-KO) mice to test the role of PDE1B in DARPP32-dependent pathways in vivo. Analysis of the response to d-methamphetamine on locomotor activity showed that the hyperactivity experienced by PDE1B mutant mice was blocked in PDE1B–/–x DARPP32–/– double-KO mice, consistent with participation of PDE1B and DARPP32 in the same pathway. Further behavioral testing in the elevated zero-maze revealed that DARPP32–/– mice showed a less anxious phenotype that was nullified in double-mutant mice. In contrast, in the Morris water maze, double-KO mice showed deficits in spatial reversal learning not observed in either single mutant compared with wild-type mice. The data suggest a role for PDE1B in locomotor responses to psychostimulants through modulation of DARPP32-dependent pathways; however, this modulation does not necessarily impact other behaviors, such as anxiety or learning. Instead, the phenotype of double-KOs observed in these latter tasks may be mediated through independent pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    39
    Citations
    NaN
    KQI
    []