Paclitaxel-loaded expansile nanoparticles enhance chemotherapeutic drug delivery in mesothelioma 3-dimensional multicellular spheroids

2015 
Abstract Objectives Intraperitoneal administration of paclitaxel-loaded expansile nanoparticles (Pax-eNPs) significantly improves survival in an in vivo model of malignant mesothelioma compared with conventional drug delivery with the clinically utilized Cremophor EL/ethanol (C/E) excipient. However, in vitro monolayer cell culture experiments do not replicate this superior efficacy, suggesting Pax-eNPs utilize a unique mechanism of drug delivery. Using a mesothelioma spheroid model, we characterized the mechanisms of enhanced tumor cytotoxicity leveraged by Pax-eNPs. Methods Human malignant mesothelioma (MSTO-211H) spheroids were co-incubated for 24 hours with Oregon Green-conjugated paclitaxel dissolved in C/E or loaded into eNPs. Oregon Green-paclitaxel uptake was measured as Oregon Green intensity via confocal microscopy and kinetics of tumor cytotoxicity were assessed via propidium iodide staining. Pharmacologic endocytotic inhibitors were used to elucidate mechanisms of eNP uptake into spheroids. Results Increased drug penetration and a 38-fold higher intraspheroidal drug concentration were observed 24 hours after MSTO-211H spheroids were treated with Oregon Green-conjugated paclitaxel loaded into eNPs compared with Oregon Green-conjugated paclitaxel dissolved in C/E ( P Conclusions Compared with monolayer cell culture, the in vitro 3-D tumor spheroid model better reflects the superior in vivo efficacy of Pax-eNPs. Persistent tumor penetration and prolonged intratumoral release are unique mechanisms of Pax-eNP cytotoxicity. 3-D spheroid models are valuable tools for investigating cytotoxic mechanisms and nanoparticle-tumor interactions, particularly given the costs and limitations of in vivo animal studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    19
    Citations
    NaN
    KQI
    []