Identification and fine mapping of a recessive gene controlling zebra leaf phenotype in maize

2021 
Leaf color mutant is an important resource for studying chlorophyll biosynthesis and chloroplast development in maize. Here, a novel mutant zebra crossband 9 (zb9) with transverse green-/yellow-striped leaves appeared from ten-leaf stage until senescence was identified from mutant population derived from the maize inbred line RP125. The yellow section of the zb9 mutant displays a reduction of chlorophyll and carotenoid contents, as well as impaired chloroplast structure. Genetic analysis showed that the zb9 mutant phenotype was caused by a single recessive gene. Map-based cloning demonstrated that the zb9 locus was delimited into a 648 kb region on chromosome 1 covering thirteen open reading frames (ORFs). Among them, a point mutation (G to A) in exon 2 of the gene Zm00001d029151, named Zmzb9, was identified based on sequencing analysis. The causal gene Zmzb9 encodes UDP-glucose-4-epimerase 4 (UGE4), a key enzyme involved in chloroplast development and was considered as the only candidate gene controlling the mutant phenotype. Expression patterns indicated that the causal gene was abundantly expressed in the leaves and sheaths, as well as significantly downregulated in the mutant compared to that in the wild type. Subcellular localization showed that ZmZB9 was localized in chloroplasts and implied the putative gene involved in chloroplast development. Taken together, we propose that the causal gene Zmzb9 tightly associated with the zebra leaf phenotype, and the obtained gene here will help to uncover the regulatory mechanism of pigment biosynthesis and chloroplast development in maize.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []