Biofilm-electrode process with high efficiency for degradation of 2,4-dichlorophenol

2011 
2,4-Dichlorophenol (2,4-DCP) from chemical industry wastewaters has caused serious environmental pollution. Removal of 2,4-DCP using either physico-chemical or biological methods is not very efficient. In this paper, a combination of biological and electrochemical methods gave satisfactory results. By comparisons of the degradation of 2,4-DCP and the removal of chemical oxygen demand (COD) in electrochemical, biological and biofilm-electrode processes, it was found that the biofilm-electrode process possesses the highest degradation efficiency and removal rate; both the pure electrochemical and the pure biological processes were far less efficient. The removal efficiency of 2,4-DCP using the biofilm-electrode process was 100% in 48 h, while that using the pure electrochemical and the pure biological processes were 62 and 42%, respectively. The experiments show that the current of 5 mA for the cathode of 9 cm2 and the initial concentration 100 mg/l of 2,4-DCP were the optimal parameters of technology for the biofilm-electrode process. The excellent effects are due to the withdrawing electron action of bacterium, electrochemically anodic oxidation and cathodic dechlorination. It is the first time that the biofilm-electrode method was applied in 2,4-DCP degradation. Here, we demonstrated that biofilm-electrode process is a promising method to remove some aromatic compounds in industrial wastewater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    12
    Citations
    NaN
    KQI
    []