Engineering of the Chemical Reactivity of the Ti/HfO2 Interface for RRAM: Experiment and Theory.

2014 
The Ti/HfO2 interface plays a major role for resistance switching performances. However, clear interface engineering strategies to achieve reliable and reproducible switching have been poorly investigated. For this purpose, we present a comprehensive study of the Ti/HfO2 interface by a combined experimental–theoretical approach. Based on the use of oxygen-isotope marked Hf*O2, the oxygen scavenging capability of the Ti layer is clearly proven. More importantly, in line with ab initio theory, the combined HAXPES-Tof-SIMS study of the thin films deposited by MBE clearly establishes a strong impact of the HfO2 thin film morphology on the Ti/HfO2 interface reactivity. Low-temperature deposition is thus seen as a RRAM processing compatible way to establish the critical amount of oxygen vacancies to achieve reproducible and reliable resistance switching performances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    38
    Citations
    NaN
    KQI
    []