Kv3 channels contribute to the delayed rectifier current in small cultured mouse dorsal root ganglion neurons

2012 
Delayed rectifier voltage-gated K+ (KV) channels are important determinants of neuronal excitability. However, the large number of KV subunits poses a major challenge to establish the molecular composition of the native neuronal K+ currents. A large part (∼60%) of the delayed rectifier current (IK) in small mouse dorsal root ganglion (DRG) neurons has been shown to be carried by both homotetrameric KV2.1 and heterotetrameric channels of KV2 subunits with silent KV subunits (KVS), while a contribution of KV1 channels has also been demonstrated. Because KV3 subunits also generate delayed rectifier currents, we investigated the contribution of KV3 subunits to IK in small mouse DRG neurons. After stromatoxin (ScTx) pretreatment to block the KV2-containing component, application of 1 mM TEA caused significant additional block, indicating that the ScTx-insensitive part of IK could include KV1, KV3, and/or M-current channels (KCNQ2/3). Combining ScTx and dendrotoxin confirmed a relevant contribution of KV2 and K...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    11
    Citations
    NaN
    KQI
    []