Numerical simulation of the turbulent convective buoyant flow of sodium over a backward- facing step

2016 
A forced convective and a buoyancy-aided turbulent liquid sodium flow over a backward-facing step with a constant heat flux applied on the indented wall is simulated. Linear eddy viscosity models are used for the Reynolds stresses. Turbulent heat fluxes are modelled with a single gradient diffusion hypotheses with two different approaches to evaluate the turbulent Prandtl number. Moreover, the influence of turbulence on heat transfer to sodium is also assessed through simulations with zero turbulent thermal diffusivity. The results are compared with DNS data from literature. The velocity and turbulent kinetic energy profiles predicted by all models are in good agreement with the DNS data. The local Nusselt number trend is qualitatively well captured, however, its magnitude is underestimated by all models for the mixed convection case. For forced convection, the heat transfer is overestimated by all heat flux models. The simulation with neglected turbulent heat transfer shows the best overall agreement for the forced convection case. For the mixed convection best agreement is obtained using a correlation to locally evaluate the turbulent thermal diffusivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    12
    Citations
    NaN
    KQI
    []