Higher horospherical limit sets for G-modules over CAT(0)-spaces
2021
The Sigma-invariants of Bieri-Neumann-Strebel and Bieri-Renz involve an action of a discrete group G on a geometrically suitable space M. In the early versions, M was always a finite-dimensional Euclidean space on which G acted by translations. A substantial literature exists on this, connecting the invariants to group theory and to tropical geometry (which, actually, Sigma-theory anticipated). More recently, we have generalized these invariants to the case where M is a proper CAT(0) space on which G acts by isometries. The "0th stage" of this was developed in our paper [BG16]. The present paper provides a higher-dimensional extension of the theory to the "nth stage" for any n.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
11
References
0
Citations
NaN
KQI