Vx-11e protects against titanium-particle-induced osteolysis and osteoclastogenesis by supressing ERK activity

2019 
Abstract Wear particle-induced osteolysis around the prosthesis is the most common long-term complication after total joint replacement surgery which often leads to aseptic loosening of the prosthesis. Osteoclasts play key roles in the osteolytic process. Currently there is a lack of clinically effective measures to prevent or treat peri-prosthetic osteolysis and thus identification of new agents that can inhibit the enhanced osteoclastic bone resorption is warranted. Through this study, we discovered that the specific and potent ERK1/2 inhibitor, Vx-11e, can protect against calvarial osteolysis caused by titanium (Ti) particles in vivo . Low doses of Vx-11e mildly reduced osteoclast resorption whilst no calvarial osteolysis was observed with high dose Vx-11e treatment. Histological examination showed fewer osteoclasts and reduced bone erosion in the Vx-11e treated groups. In vitro cellular analyses showed that Vx-11e inhibited osteoclast formation from BMM precursors in response to RANKL, as well as bone resorption by mature osteoclasts. Mechanistically, Vx-11e impaired RANKL-induced ERK1/2 signaling by inhibiting its kinase activity thereby blocking the phosphorylation of downstream substrates. Moreover, Vx-11e significantly reduced the expression of RANKL-mediated genes such as ACP5/TRAcP , CTR, MMP-9, CTSK. Collectively, our data provides evidence for the potential therapeutic use of Vx-11e for the treatment of osteolysis diseases caused by extremely actived osteoclastogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []