Early prognostic value of an Algorithm based on spectral Variables of Ventricular fibrillAtion from the EKG of patients with suddEn cardiac death: A multicentre observational study (AWAKE)

2018 
OBJECTIVE: Ventricular fibrillation (VF)-related sudden cardiac death (SCD) is a leading cause of mortality and morbidity. Current biological and imaging parameters show significant limitations on predicting cerebral performance at hospital admission. The AWAKE study (NCT03248557) is a multicentre observational study to validate a model based on spectral ECG analysis to early predict cerebral performance and survival in resuscitated comatose survivors. METHODS: Data from VF ECG tracings of patients resuscitated from SCD will be collected using an electronic Case Report Form. Patients can be either comatose (Glasgow Coma Scale - GCS - ≤8) survivors undergoing temperature control after return of spontaneous circulation (RoSC), or those who regain consciousness (GCS=15) after RoSC; all admitted to Intensive Cardiac Care Units in 4 major university hospitals. VF tracings prior to the first direct current shock will be digitized and analyzed to derive spectral data and feed a predictive model to estimate favorable neurological performance (FNP). The results of the model will be compared to the actual prognosis. RESULTS: The primary clinical outcome is FNP during hospitalization. Patients will be categorized into 4 subsets of neurological prognosis according to the risk score obtained from the predictive model. The secondary clinical outcomes are survival to hospital discharge, and FNP and survival after 6 months of follow-up. The model-derived categorisation will be also compared with clinical variables to assess model sensitivity, specificity, and accuracy. CONCLUSIONS: A model based on spectral analysis of VF tracings is a promising tool to obtain early prognostic data after SCD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []