Enhanced damage buildup in C+-implanted GaN film studied by a monoenergetic positron beam

2015 
Wurtzite GaN films grown by hydride vapor phase epitaxy were implanted with 280 keV C+ ions to a dose of 6 × 1016 cm−2. Vacancy-type defects in C+-implanted GaN were probed using a slow positron beam. The increase of Doppler broadening S parameter to a high value of 1.08–1.09 after implantation indicates introduction of very large vacancy clusters. Post-implantation annealing at temperatures up to 800 °C makes these vacancy clusters to agglomerate into microvoids. The vacancy clusters or microvoids show high thermal stability, and they are only partially removed after annealing up to 1000 °C. The other measurements such as X-ray diffraction, Raman scattering and Photoluminescence all indicate severe damage and even disordered structure induced by C+-implantation. The disordered lattice shows a partial recovery after annealing above 800 °C. Amorphous regions are observed by high resolution transmission electron microscopy measurement, which directly confirms that amorphization is induced by C+-implantation...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    12
    Citations
    NaN
    KQI
    []