Generalized PWM-Based Method for Multiphase Neutral-Point-Clamped Converters With Capacitor Voltage Balance Capability

2017 
This paper presents a generalized pulse width modulation (PWM)-based control algorithm for multiphase neutral-point-clamped (NPC) converters. The proposed algorithm provides a zero sequence to be added to the reference voltages that contributes to improve the performance of the converter by: 1) Regulating the neutral-point (NP) current to eliminate/attenuate the low-frequency NP voltage ripples; 2) reducing the switching losses of the power semiconductors; and 3) maximizing the range of modulation indices for linear operation mode. The control method is formulated following a carrier-based PWM approach. Hence, dealing with complex space-vector diagrams to solve the modulation problem for multiphase converters is avoided. The recursive approach means that it can be easily extended to n -phase converters without increasing the complexity and computational burden, making it especially attractive for digital implementation. The proposed method allows regulating the NP voltage without the need for external controllers; therefore, no parameter tuning is required. The algorithm has been tested in a four-leg NPC converter prototype performing as a three- and four-phase system and operating with balanced and unbalanced loads.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    33
    Citations
    NaN
    KQI
    []