Engineered Cytochrome c-Catalyzed Lactone-Carbene B–H Insertion

2019 
Previous work has demonstrated that variants of a heme protein, Rhodothermus marinus cytochrome c ( Rma cyt c ), catalyze abiological carbene boron–hydrogen (B–H) bond insertion with high efficiency and selectivity. Here we investigated this carbon–boron bond-forming chemistry with cyclic, lactone-based carbenes. Using directed evolution, we obtained a Rma cyt c variant BOR LAC that shows high selectivity and efficiency for B–H insertion of 5- and 6-membered lactone carbenes (up to 24,500 total turnovers and 97.1:2.9 enantiomeric ratio). The enzyme shows low activity with a 7-membered lactone carbene. Computational studies revealed a highly twisted geometry of the 7-membered lactone carbene intermediate relative to 5- and 6-membered ones. Directed evolution of cytochrome c together with computational characterization of key iron-carbene intermediates has allowed us to expand the scope of enzymatic carbene B–H insertion to produce new lactone-based organoborons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    17
    Citations
    NaN
    KQI
    []