Validity and limitations of simple reaction kinetics to calculateconcentrations of organic compounds from ion counts in PTR-MS

2019 
Abstract. In September 2017, we conducted the Proton-transfer-reaction mass-spectrometry (PTR-MS) Intercomparison campaign at CABauw (PICAB), a rural site in central Netherlands. Nine research groups deployed a total of eleven instruments covering a wide range of instrument types and performance. We applied a new calibration method based on fast injection of a gas standard through a sample loop. This approach allows calibrations on time scales of seconds and within a few minutes an automated sequence can be run allowing to retrieve diagnostic parameters that indicate the performance status. We developed a method to retrieve the mass dependent transmission from the fast calibrations, which is an essential characteristic of PTR-MS instruments, limiting the potential to calculate concentrations based on counting statistics and simple reaction kinetics in the reactor/drift tube. Our measurements show that PTR-MS instruments follow the simple reaction kinetics if operated in the standard range for pressures and temperature of the reaction chamber (i.e. 1–4 mbar, 30–120 ℃, respectively), and a reduced field strength E/N in the range of 100–160 Td. If artefacts can be ruled out, it becomes possible to quantify the signals of uncalibrated organics with accuracies better than ±30 %. The simple reaction kinetics approach produces less accurate results at E/N levels below 100 Td, because significant fractions of primary ions form water hydronium clusters. De-protonation through reactive collisions of protonated organics with water molecules need to be considered when the collision energy is a substantial fraction of the exoergicity of the proton transfer reaction, and/or if protonated organics undergo many collisions with water molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    19
    Citations
    NaN
    KQI
    []