Formation of biomolecular condensates in bacteria by tuning protein electrostatics

2020 
Biomolecular condensates provide a strategy for cellular organization without a physical membrane barrier while allowing for dynamic, responsive organization of the cell. To date, very few biomolecular condensates have been identified in prokaryotes, presenting an obstacle to engineering these compartments in bacteria. As a novel strategy for bacterial compartmentalization, protein supercharging and complex coacervation were employed to engineer liquid-like condensates in E. coli. A simple model for the phase separation of supercharged proteins was developed and used to predict intracellular condensate formation. Herein, we demonstrate that GFP-dense condensates formed by expressing GFP variants of sufficient charge in cells are dynamic and enrich specific nucleic acid and protein components. This study provides a fundamental characterization of intracellular phase separation in E. coli driven by protein supercharging and highlights future utility in designing functional synthetic membraneless organelles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []