Benefits Assessment for Single-Airport Tactical Runway Configuration Management Tool (TRCM)

2015 
The System-Oriented Runway Management (SORM) concept was developed as part of the Airspace Systems Program (ASP) Concepts and Technology Development (CTD) Project, and is composed of two basic capabilities: Runway Configuration Management (RCM), and Combined Arrival/Departure Runway Scheduling (CADRS). RCM is the process of designating active runways, monitoring the active runway configuration for suitability given existing factors, and predicting future configuration changes; CADRS is the process of distributing arrivals and departures across active runways based on local airport and National Airspace System (NAS) goals. The central component in the SORM concept is a tool for taking into account all the various factors and producing a recommendation for what would be the optimal runway configuration, runway use strategy, and aircraft sequence, considering as many of the relevant factors required in making this type of decision, and user preferences, if feasible. Three separate tools were initially envisioned for this research area, corresponding to the time scale in which they would operate: Strategic RCM (SRCM), with a planning horizon on the order of several hours, Tactical RCM (TRCM), with a planning horizon on the order of 90 minutes, and CADRS, with a planning horizon on the order of 15-30 minutes[1]. Algorithm development was initiated in all three of these areas, but the most fully developed to date is the TRCM algorithm. Earlier studies took a high-level approach to benefits, estimating aggregate benefits across most of the major airports in the National Airspace Systems (NAS), for both RCM and CADRS [2]. Other studies estimated the benefit of RCM and CADRS using various methods of re-sequencing arrivals to reduce delays3,4, or better balancing of arrival fixes5,6. Additional studies looked at different methods for performing the optimization involved in selecting the best Runway Configuration Plan (RCP) to use7-10. Most of these previous studies were high-level or generic in nature (not focusing on specific airports), and benefits were aggregated for the entire NAS, with relatively low fidelity simulation of SORM functions and aircraft trajectories. For SORM research, a more detailed benefits assessment of RCM and CADRS for specific airports or metroplexes is needed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    2
    Citations
    NaN
    KQI
    []