Strength and fracture properties of advanced SiC-based fibers

2006 
The tensile strength and the fracture properties of advanced SiC-based fibers were characterized, and an extensive fractographic analysis was conducted to correlate their mechanical behavior and microstructure. Tensile tests re vealed that the strength of Hi-Nicalon™ and Hi-Nicalon™ Type S fibers was sensitive to a critical flaw. The inspection of fracture surfaces revealed that the fracture of these fibers originated mainly at the critical flaw, which was surrounded by an obvious mirror zone. The Tyranno™-SA fiber showed a transcrystalline fracture behavior. The different fracture behavior observed in this work could be related to different fabrication processes and compositions at the grain boundary. For the Hi-Nicalon™ and Hi-Nicalon™ Type S fibers, the critical flaw size was linearly related to the mirror size. By using the linear fracture mechanics, the fracture toughness and the critical fracture energy of the fibers were estimated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    10
    Citations
    NaN
    KQI
    []