Cutting Edge: TGF-β and Phosphatidylinositol 3-Kinase Signals Modulate Distinct Metabolism of Regulatory T Cell Subsets
2018
Murine Foxp3 + regulatory T cells (Tregs) differentiated in vitro (induced Tregs [iTregs]) in the presence of anti-inflammatory cytokine TGF-β rely predominantly upon lipid oxidation to fuel mitochondrial oxidative phosphorylation. Foxp3 expression underlies this metabolic preference, as it suppresses glycolysis and drives oxidative phosphorylation. In this study, we show that in contrast to iTregs, thymic-derived Tregs (tTregs), engage in glycolysis and glutaminolysis at levels comparable to effector T cells despite maintained Foxp3 expression. Interestingly, exposure of tTregs to the anti-inflammatory cytokine TGF-β represses PI3K-mediated mTOR signaling, inhibits glucose transporter and Hk2 expression, and reprograms their metabolism to favor oxidative phosphorylation. Conversely, replicating the effects of inflammation via elevation of PI3K signaling has minimal effects on tTregs but dramatically enhances the glycolysis of normally oxidative iTregs, resulting in reduction of Foxp3 expression. Collectively, these findings suggest both extrinsic and intrinsic factors govern the unique metabolic signature of Treg subsets.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
39
Citations
NaN
KQI