Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries

2014 
Nanosheet-structured vanadium pentoxide (V2O5) has been fabricated by a sol-gel method. As revealed by the TEM, the as-synthesized V2O5 crystallites are composed of layer-by-layer stacked nanosheets. As a cathode material for lithium batteries, it exhibits much better electrochemical performance than the starting commercial V2O5 powders. A high specific discharge capacity of 264 mA h g−1 can be obtained for the nanosheet-structured electrodes, which retains the capacity of 90% after 50 cycles. However, the commercial V2O5 only delivers a specific discharge capacity of 206 mA h g−1 with a capacity retention of 64% after 50 cycles. Moreover, the nanosheet-structured V2O5 electrodes show much-improved C-rate capability. The superior cycling performance demonstrates that the nanosheet-structured V2O5 is a promising cathode material in lithium-ion battery applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    18
    Citations
    NaN
    KQI
    []