Self-assembly, DNA complexation, and pH response of amphiphilic dendrimers for gene transfection.

2007 
Cationic lipids and polymers are routinely used for cell transfection, and a variety of structure-activity relation data have been collected. Few studies, however, focus on the structural aspects of self-assembly as a crucial control parameter for gene delivery. We present here the observations collected for a set of cationic dendritic amphiphiles based on a stiff tolane core (1-4) that are built from identical subunits but differ in the number and balance of their hydrophobic and cationic hydrophilic moieties. We established elsewhere that vectors 3 and 4 have promising transfection properties. Scanning probe microscopy (AFM, STM), cryo-transmission electron microscopy (cryo-TEM), and Langmuir techniques provide insight into the self-assembly properties of the molecules under physiological conditions. Furthermore, we present DNA and pH "jump" experiments where we study the response of Langmuir films to a sudden increase in DNA concentration or a drop in pH. We find that the primary self-assembly of the amphiphile is of paramount importance and influences DNA binding, serum sensitivity, and pH response of the vector system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    62
    Citations
    NaN
    KQI
    []