Receptor-dependent Metabolism of Platelet-activating Factor in Murine Macrophages

2002 
Abstract Degradation of platelet-activating factor (PAF) was examined by incubating PAF with macrophages from PAF receptor-deficient mice. The degradation rate was halved as compared with wild-type mice. The reduction of the rate was comparable with the presence of a PAF antagonist WEB 2086 in wild-type cells. PAF was internalized rapidly (t ≈ 1 min) into wild-type macrophages. The PAF internalization was inhibited by the treatment of 0.45 m sucrose but was not affected by phorbol 12-myristate 13-acetate, suggesting that PAF internalizes into macrophages with its receptor in a clathrin-dependent manner. Internalized PAF was degraded into lyso-PAF with a half-life of 20 min. Treatment of concanavalin A inhibited the conversion of PAF into lyso-PAF, suggesting that uptake of PAF enhances PAF degradation. Lyso-PAF was subsequently metabolized into 1-alkyl-2-acyl-phosphatidylcholine. In addition, release of PAF acetylhydrolase from macrophages was enhanced when wild-type macrophages were stimulated with PAF but not from macrophages of PAF receptor-deficient mice. Thus, the PAF stimulation of macrophages leads to its degradation through both intracellular and extracellular mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    21
    Citations
    NaN
    KQI
    []