ProPOSE: Direct Exhaustive Protein–Protein Docking with Side Chain Flexibility

2018 
Despite decades of development, protein–protein docking remains a largely unsolved problem. The main difficulties are the immense space spanned by the translational and rotational degrees of freedom and the prediction of the conformational changes of proteins upon binding. FFT is generally the preferred method to exhaustively explore the translation-rotation space at a fine grid resolution, albeit with the trade-off of approximating force fields with correlation functions. This work presents a direct search alternative that samples the states in Cartesian space at the same resolution and computational cost as standard FFT methods. Operating in real space allows the use of standard force field functional forms used in typical non-FFT methods as well as the implementation of strategies for focused exploration of conformational flexibility. Currently, a few misplaced side chains can cause docking programs to fail. This work specifically addresses the problem of side chain rearrangements upon complex formatio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    11
    Citations
    NaN
    KQI
    []