Reducing Actuator Switchings for Motion Control of Autonomous Underwater Vehicles

2012 
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle. Indeed, due to the vehicles' design and the actuation modes usually under consideration for underwater plateforms the number of actuator switchings must be kept to a small value to insure feasibility and precision. This is the main objective of the algorithm presented in this paper. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six-degrees-of freedom and one is minimally actuated with control motions in the vertical plane only.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []