Modeling and Analysis of the Spread of COVID-19 Under a Multiple-Strain Model with Mutations

2021 
Since December 2019, COVID-19 has caused worldwide devastation. To devise effective countermeasures, it is important to develop mathematical models that help us to understand and predict the spreading of COVID-19, as well as to provide guidelineson what can be done to limit its spread. To this end, we leverage recent work of Eletreby et al. (2020) which studies a model where multiple strains of a virus propagate through a network while also undergoing mutations. Highlighting the recent reports on a mutation of SARS-CoV-2 that is thought to be more transmissible than the original strain, we discuss the importance of incorporating mutations and evolutionary adaptations in epidemic models. We also demonstrate how the results of Eletreby et al. (2020) can be used to assess the effectiveness of mask-wearing in limiting the spread of COVID-19. These are supported by simulation results showing the impact of various mutation and mask-wearing possibilities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    4
    Citations
    NaN
    KQI
    []