Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: Preparation and in vitro osteogenic activity evaluation

2017 
Abstract In this study, three-dimensional reduced graphene oxide (3D-rGO) porous films were fabricated using a two-step electrochemical method, including an electrochemical deposition process for the self-assembly of GO and an electrochemical bubbling-based transfer. The morphology, physical properties, and phase composition of the 3D-rGO films were characterized, and the cellular bioactivities were evaluated using pre-osteoblasts (MC3T3-E1 cells). The attachment, proliferation and differentiation of the MC3T3-E1 cells on the 3D-rGO films was analyzed by scanning electron microscopy (SEM), Cell Counting Kit-8 (CCK-8) assays and live/dead cell staining, and alkaline phosphatase (ALP) activity assays, respectively. The expression of osteogenic-related genes in MC3T3-E1 cells was evaluated by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that the 3D-rGO films supported cell viability and proliferation, as well as significantly enhanced ALP activity and osteogenic-related genes (ALP, OPN, Runx2) expressions. Our findings indicate the promising potential of the 3D-rGO porous films for bone tissue engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    16
    Citations
    NaN
    KQI
    []