Metabolic flux analysis of Saccharomyces cerevisiae in a sealed winemaking fermentation system

2015 
A sealed fermentation (SF) system and an anaerobic fermentation (AF) system (under normal atmospheric pressure conditions) were employed to study the influence of endogenous carbon dioxide (CO 2) on the metabolism of Saccharomyces cerevisiae. The results showed that the fermentation stopped when 82.0 g L −1 glucose was consumed and the endogenously produced CO2: pressure reached to 14.3 MPa in SF system, while the sugar was used up during AF. The total yeast viable count in the end of AF was higher than that of SF. It was also observed that the ethanol yield in AF and SF was similar, the glycerol yield in AF was 1.26 times higher than that in SF, while the succinic acid and acetic acid yields in SF were 24.7 and 26 times higher than that in AF, respectively. Additionally, this work provides a stoichiometric model used for metabolic flux analysis of S. cerevisiae to compare the flux distribution in SF and AF. The results showed that CO 2 had an important effect on the pathways of oxaloacetic acid formation from pyruvic acid and ribose-5-phosphate formation from glucose-6-phosphate. However, the pathway of ethanol formation from pyruvic acid (decarboxylation reaction), catalyzed by pyruvate decarboxylase, was insensitive to CO2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    4
    Citations
    NaN
    KQI
    []