Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification

2018 
Developing and understanding electron-rich electrides offers a promising opportunity for a variety of electronic and catalytic applications. Using a geometrical identification strategy, here we identify a new class of electride material, yttrium/scandium chlorides Y(Sc)xCly (y:x < 2). Anionic electrons are found in the metal octahedral framework topology. The diverse electronic dimensionality of these electrides is quantified explicitly by quasi-two-dimensional (2D) electrides for [YCl]+∙e− and [ScCl]+∙e− and one-dimensional (1D) electrides for [Y2Cl3]+∙e−, [Sc7Cl10]+∙e−, and [Sc5Cl8]2+∙2e− with divalent metal elements (Sc2+: 3d1 and Y2+: 4d1). The localized anionic electrons were confined within the inner-layer spaces, rather than inter-layer spaces that are observed in A2B-type 2D electrides, e.g. Ca2N. Moreover, when hydrogen atoms are introduced into the host structures to form YClH and Y2Cl3H, the generated phases transform to conventional ionic compounds but exhibited a surprising reduction of work function, arising from the increased Fermi level energy, contrary to the conventional electrides reported so far. Y2Cl3 was experimentally confirmed to be a semiconductor with a band gap of 1.14 eV. These results may help to promote the rational design and discovery of new electride materials for further technological applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    21
    Citations
    NaN
    KQI
    []