Nanoindentation time-dependent deformation/recovery suggestive of methylglyoxal induced glycation in calcified nodules

2017 
Abstract Although empirical findings have indicated increase in bone fracture risk in type 2 diabetes patients, that has yet to be proven by results obtained at the material level. Here, we report evidence showing nanoscale time-dependent deformation/recovery of in vitro calcified nodules mimicking bone turnover in type 2 diabetes in respect to methylglyoxal (MG)-induced glycation. Nanoindentation test results revealed that calcified nodules cultured with MG did not show adequate dimensional recovery, despite a large creep rate during constant load indentation testing. This lesser recovery is likely based on the linear matrix polymerization network formed by advanced glycation end products (AGEs) as a secondary product of MG. Since elevated serum MG and abnormal bone turnover related to the amount of AGEs are observed in cases of type 2 diabetes, this time-dependent behavior may be one of the factors of the bone fracture mechanism at the material level in affected patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []