Cytosolic phosphofructokinases are important for sugar homeostasis in leaves of Arabidopsis thaliana.

2021 
Background and aims ATP-dependent phosphofructokinases (PFKs) catalyse phosphorylation of the carbon-1 position of fructose-6-phosphate, to form fructose-1,6-bisphosphate. In the cytosol, this is considered a key step in channelling carbon into glycolysis. Arabidopsis thaliana has seven genes encoding PFK isoforms, two chloroplastic and five cytosolic. This study focusses on the four major cytosolic isoforms of PFK in vegetative tissues of A. thaliana. Methods We have isolated homozygous knock-out individual mutants (pfk1, pfk3, pfk6, pfk7) and two double mutants (pfk1/7 and pfk3/6) and characterized their growth and metabolic phenotypes. Key results In contrast to single mutants and the double mutant pfk3/6 for the hypoxia-responsive isoforms, the double mutant pfk1/7 had reduced PFK activity and shows a clear visual and metabolic phenotype with reduced shoot growth, early flowering, and elevated hexose levels. This mutant also has an altered ratio of short/long aliphatic glucosinolates and an altered root-shoot distribution. Surprisingly, this mutant does not show any major changes in short-term carbon flux and in levels of hexose-phosphates. Conclusions We conclude that the two isoforms PFK1 and PFK7 are important for sugar homeostasis in leaf metabolism and apparently source/sink relations in Arabidopsis, while PFK3 and PFK6 only play a minor role under normal growth conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []