Origin of high fidelity in target-sequence recognition by PNA-Ce(IV)/EDTA combinations as site-selective DNA cutters.

2009 
Double-duplex invasion of pseudocomplementary peptide nucleic acid (pcPNA) is one of the most important strategies for recognizing a specific site in double-stranded DNA (Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11804−11808). This strategy has recently been used to develop artificial restriction DNA cutters (ARCUTs) for site-selective scission of double-stranded DNA, in which a hot spot formed by double-duplex invasion of PNA was hydrolyzed by Ce(IV)/EDTA (Nat. Protoc. 2008, 3, 655−662). The present paper shows how and where the target sequence in double-stranded DNA is recognized by the PNA−Ce(IV)/EDTA combinations for site-selective scission. The mismatch-recognizing activities in both the invasion process and the whole scission process are evaluated. When both pcPNA additives are completely complementary to each strand of the DNA, site-selective scission is the most efficient, as expected. Upon exchange of one DNA base pair at the invasion site with another base pair, which introduces mismatches between...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    39
    Citations
    NaN
    KQI
    []