Influence of buoyancy in a mixed convection liquid metal flow for a horizontal channel configuration
2020
Abstract This article presents the direct numerical simulation (DNS) of mixed convection turbulent heat transfer in a horizontal channel case for liquid lead. Cartesian mesh is used and the incompressible Navier-Stokes equations are discretized with highly accurate finite difference sixth-order compact schemes to perform the DNS. The influence of mixed convection in liquid metal with Prandtl number equal to 0.025 and Reynolds number equal to 4667 has been studied by varying the Richardson number (Ri = 0, 0.25, 0.50, 1.00). The obtained results are extensively analyzed and discussed in this article. In particular, large-scale circulation is observed under the influence of buoyancy. Compared to the forced convection case (Ri = 0), stronger velocity fluctuations are noticed that highlight the fact that turbulence is strongly enhanced with the increasing buoyancy. It also proves that the thermal plumes rising up from the hot wall of the channel activate the cross-stream eddies. Moreover, temperature fluctuations are found to be more homogeneously distributed with increasing buoyancy effects and mixing is more effective in the center of the channel. In addition, compared with forced convection, mixed convection has shown enlargement of the large-scale structures that only appear in the temperature field for low Prandtl number fluids. Extensive results of flow and temperature fields are analyzed and presented.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
2
Citations
NaN
KQI