Fracture behavior of Cu-cored solder joints

2011 
Copper-cored solder can be regarded as the next-generation solder for microelectronic semiconductors exposed to harsh operating conditions owing to its excellent sustainability under extreme thermal conditions, e.g., in microelectronic semiconductors used in transportation systems. Cu-cored solder joints with two different coating layers, Sn–3.0Ag and Sn–1.0In, were compared with the baseline Sn–3.0Ag–0.5Cu solder. The fracture strength and failure mode were examined using the high-speed ball-pull and normal-speed shear tests. The Cu-cored solder joint with the Sn–1.0In plating layer exhibited the highest ball-pull and shear strengths. In addition, it showed a much lower percentage of interface fracture between the Cu-core and plating layer than the interface fracture percentage in the Sn–3.0Ag plating layer due to the improved wettability between the Cu-core and Sn–1.0In plating layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    17
    Citations
    NaN
    KQI
    []