Experimental and molecular docking model studies for the adsorption of polycyclic aromatic hydrocarbons onto UiO-66(Zr) and NH2-UiO-66(Zr) metal-organic frameworks

2020 
Abstract Metal-organic frameworks UiO-66(Zr) and NH2-UiO-66(Zr) were characterized by x-ray diffraction (XRD), fourier transformed infrared spectroscopy (FTIR), field emission scanning electron microscopy (SEM), thermogravimetry (TG) and N2 adsorption-desorption measurements. The porous nature of the materials was revealed by the higher Brunauer-Emmett-Teller (BET) surface area of 1420 m2 g-1, 985 m2 g-1 and particles size of 7.56 nm, 3.56 nm for UiO-66(Zr) and NH2-UiO-66(Zr) respectively. Enhanced adsorption capacity and recyclability of the MOFs towards anthracene (ANT) and chrysene (CRY) removal in aqueous medium was achieved. 98.6 and 96.4 % of ANT was removed within 25 mins, while 97.9 and 95.7% of CRY was removed within 30 mins for the UiO-66(Zr) and NH2-UiO-66(Zr) respectively. Molecular docking was employed to model the surface interactions of the synthesized MOFs with the pollutants and the simulated binding energies were in good agreement with the experimental results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    9
    Citations
    NaN
    KQI
    []