Comparative Capacity Assessment of CFRP Retrofit Techniques for RC Frames with Masonry Infills Using Pushover Analysis

2019 
In this study, nonlinear static pushover analysis was performed to compare the effectiveness of different carbon fibre-reinforced polymers (CFRP) rehabilitation schemes for existing masonry-infilled RC frames. A three-bay five-storey reinforced concrete (RC) frame with masonry infill walls designed according to previous building codes was modelled as a representative of existing low-rise RC frames. The earthquake retrofitting effects of twelve CFRP strengthening schemes were compared in terms of the global pushover curve, maximum load capacity, maximum interstorey drift ratio (IDR), plastification in the frames, and maximum energy dissipation capacity. The results indicate that the improper selection of a retrofitting scheme is likely to result in the change of the soft storey location, which would cause unexpected damage to structures. The CFRP rehabilitation of both columns and infills for the bottom three floors or more leads to a significant increase in maximum load, maximum IDR, maximum energy, and maximum number of plastic hinges in the frames.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    1
    Citations
    NaN
    KQI
    []